Labile or inert?

Labile – a compound that undergoes reactions with a relatively high rate of substitution

Inert – a compound that undergoes reactions with a slow rate of substitution Inert is a relative term, $t_{1/2} > 1$ min at 25 °C

3 main factors that affect the whether a complex is labile or inert:

- 1. Size: Smaller metal ions tend to be more inert as ligands are held more tightly.
- 2. Charge on Metal: The greater the charge on a metal ion in a complex, the greater the tendency towards the complex being inert
- 3. Number of d electrons and configuration

Octahedral geometry d-electron configuration: labile or inert?

# of d-electrons / configuration	Reactivity	Notes
d1	Labile	N/A
d ²	Labile	N/A
d ³	Inert	N/A
d ⁴ Low Spin	Inert	N/A
d⁴ High Spin	Labile	Especially labile as it is structurally distorted by the Jahn-Teller effect.
d ⁵ Low Spin	Inert	N/A
d ⁵ High Spin	Labile	N/A
d ⁶ Low Spin	Inert	N/A
d ⁶ High Spin	Labile	N/A
d ⁷ High Spin	Labile	N/A
d ⁸ Square Planar	Inert	For d ⁸ and above low spin is the same as high spin.
d ⁸	Intermediate	This configuration is intermediate, especially with weak field ligands.
d ⁹	Labile	Like d ⁴ H.S. this configuration is especially labile as it is distorted by Jahn-Teller effect.
d ¹⁰	Labile	N/A

Trans-effect vs Trans-influence

Trans-influence – If "A" forms a very strong sigma-bond to the metal, it competes for the metal orbitals with the leaving group, "X," thus weakening the M–X bond

Trans-influence determined by sigma-donor strength (basicity):

 $R_3Si^- > H^- > H_3C^-$, $NC^- > olefin$, $CO > R_3P > NO_2^- > I^- > Br^- > CI^- > H_3N > HO^- > H_2O$

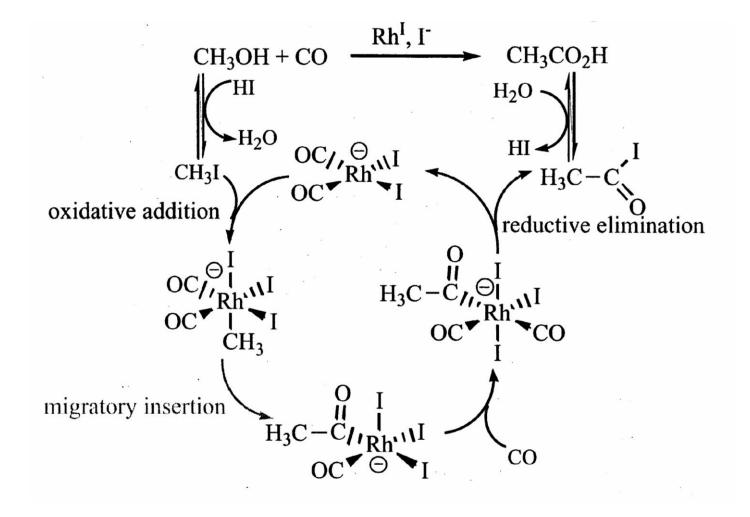
Trans-effect – A strongly sigma-donating and/or pi-accepting group "A" will greatly increase the reaction rate relative to a weak sigma-donor/poor pi-acid "A." Factors that dominate the trans-effect include:

- 1. Ground state weakening of M–X bond (trans-influence)
- 2. Stabilization of the presumed 5-coordinate intermediate

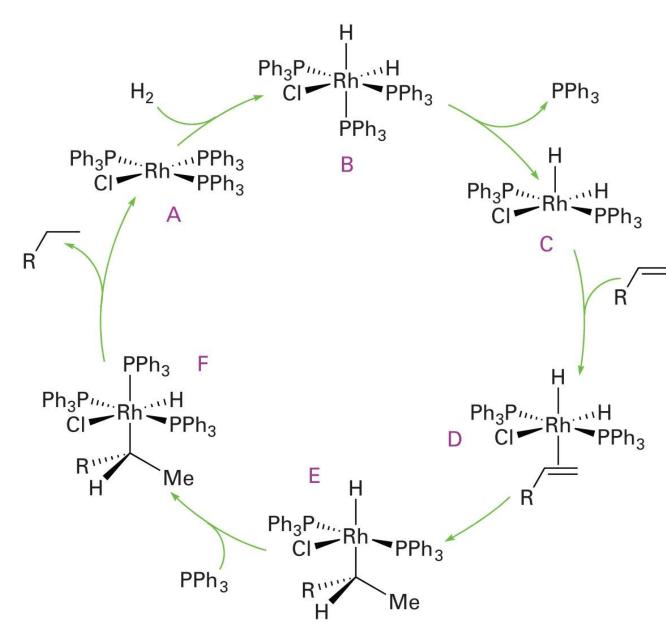
Taking into account BOTH trans-influence and pi- effects:

 $NO^+ > CO > CN^- > PR_3$, $H^- > H_3C^- > Ph^- > NO_2^-$, $I^- > Br^- > CI^- > py$, H_2O , HO^- , NH_3

Inner Sphere Reactivity

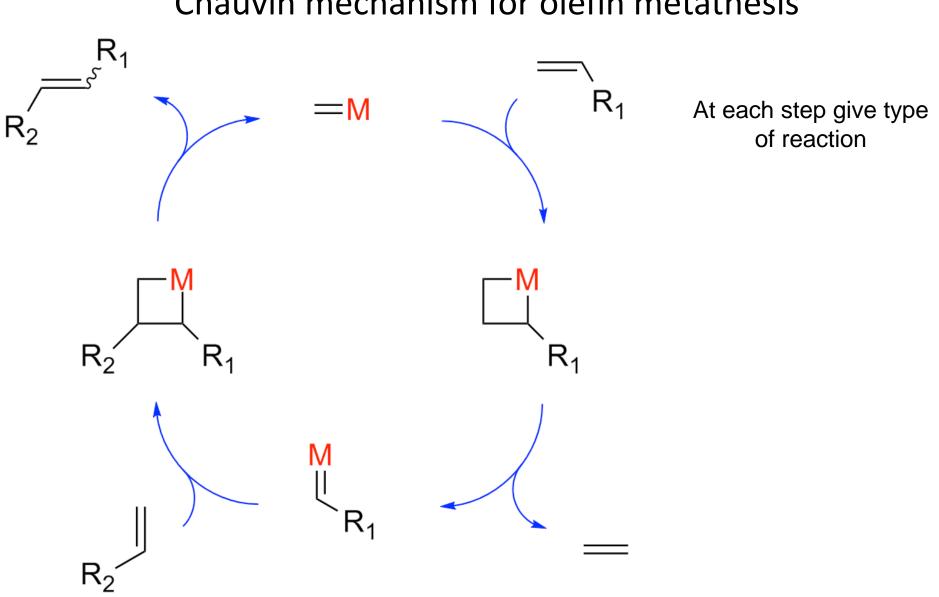

Metal Centered – gain or loss of ligands

- 1. Ligand substitution
- 2. Oxidative addition
- 3. Reductive elimination
- 4. Nucleophilic displacement
- 5. Transmetallation


Ligand Centered – modification of ligands

- 1. Migratory insertion
 - a) Carbonyl insertion
 - b) 1,2-insertion
- 2. Hydride elimination
- 3. Abstraction

Monsanto Acetic Acid Process



Olefin hydroformylation

At each step give:

- 1. Type of reaction
- 2. Oxidation state
- 3. d-electron count
- 4. Total electron count

Chauvin mechanism for olefin metathesis